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ABSTRACT


This report introduces new research on the generalised Marcum Q-Function, 
and in particular, the probability of detection of a number of incoherently inte
grated signals in a Gaussian clutter and noise environment. A new probabilistic 
association is derived, linking this detection probability with a probability as
sociated with two independent Poisson random variables. Additionally, it is 
shown that this detection probability is the solution to two stochastic Volterra 
integral equations. This results in a means of obtaining estimates of this detec
tion probability. Specifically, lower and upper bounds are derived using these 
representations, and the bounds are compared with known results. As a by-
product of this work a new useful expression for the differences in distributions 
of independent Poissons random variables is obtained. 

APPROVED FOR PUBLIC RELEASE 



DSTO—RR—0304 

Published by 

Defence Science and Technology Organisation 
PO Box 1500 
Edinburgh, South Australia, Australia 5111 

Telephone: (08) 8259 5555

Facsimile: (08) 8259 6567


cs Commonwealth of Australia 2006 
AR No. AR-013-559 
December, 2005 

APPROVED FOR PUBLIC RELEASE


ii



DSTO—RR—0304 

Stochastic Representations of the Marcum Q-Function and

Associated Radar Detection Probabilities


EXECUTIVE SUMMARY 

The work presented here is a consequence of the ongoing long range research associated 
with radar detection issues that arose out of the task AIR 01/217, which has now been 
succeeded by AIR 04/216. The purpose of this task is to provide the Royal Australian Air 
Force with technical advice on the performance of the Elta EL/M-2022 maritime radar. 
The latter radar is used in the AP-3C Orion fleet. Key performance measures of a radar 
include probabilities of false alarm and detection. Earlier work by the author focused 
on how Monte Carlo methods could be used to estimate such quantities. The research 
found in this report arose out of the need to find an efficient Monte Carlo estimator for 
a single pulse probability of detection of a target in Gaussian clutter and noise. This 
was a component in a two-tiered Monte Carlo estimator for a binary integrated detection 
probability. A new association was discovered between the pulse detection probability and 
a pair of independent Poisson random variables. The mathematics behind this discovery 
is presented here. Furthermore, it turns out that this result can be extended to the case 
of a series of incoherently integrated pulses. Consequently, this provides a new twist on 
the generalised Marcum Q-Function. The latter is an important function in the study 
of radar and communications, and hence new representations for it are of interest to the 
wider radar community. 

In addition to presenting this new result, it is shown that this detection probability is the 
solution to two stochastic Volterra integral equations of the second kind. These represen
tations for the detection probability suggest ways in which bounds can be obtained. The 
importance of bounds on such probabilities is that they indicate the minimum and maxi
mum performance levels of a radar detection scheme. We construct new lower and upper 
bounds on a specific detection probability, and compare them with well-known results 
from the signal processing literature. 
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Glossary 

IN Natural numbers {0, 1, 2, . . .}.


IP Probability.


IE Statistical expectation.


l 
1 if x ∈ A;

II Indicator function: II[x∈A] = 0 otherwise. 

:= Defined to be. 

ς Signal to noise ratio (SNR). 

τ Detection threshold. 

−x sin θdθ.In(x) Modified Bessel function of order n: In(x) = 
1 
8 π 

(−ie−iθ)n e 
2π −π p Q

2
1 
8 ∞ 

n −
x +

2 
α2 

Qn(α, β) Generalised Marcum Q-Function: Qn(α, β) = x e In−1(αx)dx. 
αn−1 β 

√ √ 
ρn(ς, τ) Detection probability of n incoherently integrated signals: ρn(ς, τ) = Qn( 2nς, 2τ). 

ρ(ς, τ) = ρ1(ς, τ ). 

8 ∞2 −t2 Erfc(z) Complementary error function: Erfc(z) = √ e dt. 
π z 

a ∧ b Minimum of a and b. 

a ∨ b Maximum of a and b. 

d d 
= Equality in distribution: X = Y is equivalent to IP(X ∈ A) = IP(Y ∈ A) for all sets A. 
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Po(λ) Poisson Distribution with mean λ > 0: if X = 
d 
Po(λ), then IP(X = j) = e−

j

λ

! 
λj , for 

all j ∈ IN. 

� −λλjPo(λ){A} Cumulative Poisson probability on set A ⊂ IN: Po(λ){A} = e .j∈A j! 

d
Bin(n, p) Binomial Distribution with parameters n ∈ IN and p ∈ [0, 1]: if X = Bin(n, p),X ~ 

then IP(X = j) = 
n 

(1 − p)n−jpj , for j ∈ {0, 1, . . . , n}. 
j 

d
R(α,β) Uniform (or rectangular) distribution on the interval [α,β] (α < β): If X = 

R(α,β), then IP(X ≤ x) = x−α , for x ∈ [α,β].β−α 
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1 Preliminaries 

1.1 Background 

The single pulse probability of detection, for a constant target in Gaussian clutter and 
noise, has been the subject of much investigation in foundational studies in the mathemat
ical analysis of radar detectors. Expressions for such probabilities first appeared in [Rice 
1944 and 1945, Marcum 1960 and Di Franco and Rubin 1968], and more recently, [Lev-
anon 1988 and Minkler and Minkler 1990] contain detailed analyses deriving this classical 
detection probability. 

Under a Neyman-Pearson regime, this probability of detection appears as an integral in
volving a modified Bessel function of order zero. This integral does not have a closed 
analytic form. As it appears in a number of modelling applications, such as binary in
tegration [Shnidman 1998], a number of authors have examined ways of estimating it 
efficiently. [Shnidman 1995, 1998 and 2002] applied a Maclaurin series expansion to the 
Bessel function, and consequently obtains a number of useful results. Simulation method
ology can also be used to estimate this pulse probability of detection. In [Weinberg and 
Kyprianou 2005], Monte Carlo methods are used to estimate it. 

As a result of searching for an efficient estimator for this pulse detection probability, a new 
probabilistic expression for it has been obtained. It can be shown [Weinberg and Kyprianou 
2005] that the detection probability is identical to a comparison of two independent Poisson 
random variables. One is centred on the average signal strength, while the other is centred 
on a normalised detection threshold. 

1.2 Probability of Detection in Gaussian Clutter 

The following is included for completeness, and to provide a context for the work to be 
discussed in subsequent sections, and is based upon the developments in [Levanon 1988]. 
Consider a radar operating in Gaussian clutter and noise, from which a single pulse is 
transmitted. The transmitted signal is a sine wave with period ψ and frequency ω. The 
returned signal will be assumed to be a phase shifted version of the original, with the 
addition of interference. For modelling simplicity, we do not differentiate between clutter 
and noise, nor any other environmental factors that may distort the signal. We will 
just assume the total interference is a Gaussian random variable. The returned signal is 
passed to a narrow bandpass filter, with centre frequency ω. We assume this filter has 
a rectangular response with bandwidth fB. Then assuming that fB > ψ 

1 , the returned 
signal is 

s(t) = A cos(ωt − θ) = a cos(ωt) + b sin(ωt), (1) p Q √ 
where θ = arctan a

b is the phase shift of the signal, and the amplitude is A = a2 + b2 . 

We assume that a and b, and consequently A, are deterministic, and that θ is uniformly 
distributed on the interval [0, 2π). 

1 
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When Gaussian noise is passed through a narrow bandpass filter, the output can be written 
as 

n(t) = X(t) cos(ωt) + Y (t) sin(ωt), (2) 

where X(t) and Y (t) are both independent and identically distributed Gaussian random 
variables, with zero mean and variance σ2 . By combining both (1) and (2), the radar 
signal return, in additive Gaussian noise, at the detector is 

ζ(t) = s(t) + n(t) 

= (A cos θ + X(t)) cos(ωt) + (A sin θ + Y (t)) sin(ωt) 

= (a + X(t)) cos(ωt) + (b + Y (t)) sin(ωt) (3) 

= R(t) cos(ωt − Φ(t)), 
where 

R(t) = 
� 
(a + X(t))2 + (b + Y (t))2 and Φ(t) = arctan 

} 
b + Y (t) 

] 
. (4) 

a + X(t)


It can be shown that the joint density of (R, Φ) is


r 
^ 
r2 + a2 + b2 − 2ra cos φ − 2rb sin φ

�
f(R,Φ)(r, φ|θ) = exp − , (5)

2πσ2 2σ2 

where σ is as defined previously. To obtain the marginal probability density function (pdf) 
of the amplitude R(t), we integrate the density (5) over all phases to obtain 8 2π 

fR(r|θ) = f(R,Φ)(r, φ|θ) 
0 

r 
^ 
r2 + A2 

� }
rA
]

= exp − I0 , (6)
σ2 2σ2 σ2 

where I0, the modified Bessel function, of the first kind, of order zero, is defined to be 8 2π 1 
8 π 

I0(x) = exp(x cos(θ − ψ))dθ = e x cos θdθ. (7) 
0 2π −π 

Note that (6) does not depend on θ, so that fR(r|θ) = fR(r). We are now in a position 
where we can specify the probabilities of false alarm and detection for a single pulse. The 
classical approach to radar detection is to declare a target present when some statistic 
of the returned signal exceeds some pre-defined threshold level. A common choice in the 
literature is for the amplitude (R(t)) to exceed a mean level [see Levanon 1988]. We 
suppose this threshold is µτ . Observe that, in view of (6), in the case where there is no 
signal present in the return, so that A = 0, the pdf of the amplitude is Rayleigh distributed 
with parameter σ. The probability of false alarm is the probability of declaring a target 
present when there is only noise. Hence, under the Neyman-Pearson criterion, 8 ∞ } ] ^ 

2 
�

IPFA = 
σ

r 
2 
exp − 

2σ

r 
2 
dr = exp − 

2

µ

σ
τ 
2 
. (8) 

µτ 

2



DSTO—RR—0304 

The probability of detection is the probability of correctly declaring a target present. Un
der the Neyman-Pearson Criterion, for the case of a band-limited signal (1) in bandlimited 
Gaussian noise, it is given by the integral 8 ∞ ^ � } ]

r r2 + A2 rA 
IPD = exp − I0 dr, (9)

σ2 2σ2 σ2 µτ 

where the SNR is given by ς = 2
A
σ

2

2 [see Levanon 1988]. The larger the signal to noise 
strength, the more likely we are to detect the target. In order to emphasize the dependence 
of (9) on the SNR ς and the threshold τ , we will write the detection probability as ρ(ς, τ).√ 
By a change of variables r = 2σ2ν, and using the definition of ς, it can be shown that 
(9) is equivalent to 8 ∞ √ 

IPD = e −(ν+ς)I0(2 νς)dν := ρ(ς, τ), (10) 
τ 

2 

where τ = 2
µ
σ
τ 
2 . The detection probability (10) is the classical expression that can be found 

in [Levanon 1988] and [Minkler and Minkler 1990]. 

1.3 The Marcum Q-Function 

The Marcum Q-Function arises in communications and radar signal processing problems. 
It has a long history in the study of target detection by pulsed radars [Marcum 1950, 
Marcum 1960 and Marcum and Swerling 1960]. As pointed out in [Simon 1998 and 
Simon and Alouini 2003], it occurs in performance analysis related to partially coherent, 
differentiably coherent and noncoherent communications. Performance measures where 
the Q-Function arise are error probabilities in transmission over fading channels, and 
detection probability for code acquisition in direct sequence code division multiple access 
systems [Corazza and Ferrari 2002]. A specific example can be found in [Chiani 1999], 
who applies the Q-Function to performance evaluation of noncoherent and differentiably 
coherent detection of digital modulation over Nakagami fading channels. In radar signal 
processing, the Q-Function appears as a detection probability. In particular, it is related 
to the probability of detection on n incoherently integrated received signals, in a Gaussian 
clutter and noise environment [Helstrom 1968, Nuttall 1975 and Shnidman 1989]. 

The standard Marcum Q-Function is defined by the integral p Q
2+α28 ∞ − x 

Q(α, β) := xe 2 I0(αx)dx. (11) 
β 

√ 
To see the connection (11) has to (10), introduce the transformation α = 2ς and β = √ 2 
2τ . Then by introducing the transformation ν = x

2 in integral (11), we obtain √ √ 
Q(α, β) = Q( 2ς, 2τ) 

8 ∞ 2 √ 
= e −ς √ xe − 

x 
2 I0( 2ςx)dx 

2τ 8 ∞ √ 
= e −ς e −νI0(2 ςν)dν. (12) 

τ 

3
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√ √ 
Hence it follows that the single pulse probability of detection ρ(ς, τ) = Q( 2ς, 2τ). 

One of the issues associated with (11), and in particular, the generalised Marcum Q-
Function to be introduced in Section 2, is how to estimate it well. Also of interest is 
obtaining upper and lower bounds on it. A number of authors have investigated these 
problems, including [Chiani 1999, Corazza and Ferrari 2002, Simon 1998, Simon and 
Alouini 2003 and Shnidman 1989]. 

1.4 Contributions of this Report 

This report outlines new mathematical research into the detection probability (10), and 
its generalisation to n incoherently integrated pulses in Gaussian clutter. Specifically, 
[Shnidman 1989] does not identify a probabilistic interpretation to this detection prob
ability, which can be used as a mechanism for generating a Monte Carlo estimator for 
the generalised Marcum Q-Function. A new interpretation of the detection probability, 
in Gaussian clutter and noise, of a number of incoherently integrated received signals is 
explored. In particular, it will be shown that this detection probability is equivalent to a 
probability associated with two independent Poisson variables. This generalises the case 
employed in [Weinberg and Kyprianou 2005]. 

In addition, some new interesting properties of this detection probability are explored 
mathematically. It is shown that the generalised detection probability under investigation 
is the solution to two stochastic Volterra integral equation of the second kind [Davis 1962 
and Tricomi 1957]. This leads to useful representations that facilitate the construction 
of bounds on the detection probability, and consequently, the Marcum Q-Function. We 
will investigate the performance of some new bounds on the single pulse probability of 
detection (10). 

4
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2 Marcum’s Q-Function and a Poisson 

Connection 

2.1 Generalised Marcum Q-Function 

The generalised Marcum Q-Function of order n ∈ IN [Corazza and Ferrari 2002, Nuttall 
1975, Simon 1998 and Simon and Alouini 2003] is defined by the integral p Q

2
1 
8 ∞ 

n −
x +

2 
α2 

Qn(α, β) = x e In−1(αx)dx, (13)
αn−1 β 

where Ik(x) is the modified Bessel function, of the first kind, of order k [Bowman 1958], 
which can be defined by the integral formula 8 π 8 π 

Ik(x) =
1 

(−ie−iθ)k e −x sin θdθ = 1 
e x cos θ cos(kθ)dθ, (14)

2π −π π 0 

where i2 = −1. We will be exploring this function throughout this report. In particular, we 
are interested in it because of its connection to radar detection probabilities. As pointed 
out in [Shnidman 1989], the detection probability of n incoherently integrated received 
signals in a Gaussian noise and clutter environment is given by 

w W (n−1)8 ∞ ν 2 √ 
ρn(ς, τ) = e −(ν+nς)In−1(2 νnς)dν, (15) 

τ nς 

when using a quadratic detector via the Neyman-Pearson Criterion. 

In [Weinberg and Kyprianou 2005], (15) was investigated in the case where n = 1. It was 
shown that (15) for n = 1 is identical to the probability that one Poisson random variable, 
representing a threshold variable, is less than or equal to another Poisson, representing 
the SNR. We will show that this result can be generalised to (15). 

It can be shown [Helstrom 1968, Nuttall 1975 and Shnidman 1989] that (15) is related to 
(13) through √ √ 

ρn(ς, τ) = Qn( 2nς, 2τ). (16) 

Hence, any new expression obtained for either one of (13) and (15) can be applied to the 
other, through (16). 

2.2 The Poisson Connection 

We now derive a new probabilistic expression for (15). The following mathematics is 
included for completeness, and is based upon the analysis in [Shnidman 1989]. Recall that 

5 
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the Bessel function of the first kind of order n ∈ IN, denoted Jn(x), has a series expansion 
in terms of Gamma functions D i∞ x n+2k3 (−1)k 

Jn(x) = 
2 , (17)

k!Γ(n + k + 1)
k=0 

[see Bowman 1958 and Tsypkin and Tsypkin 1988] and the modified Bessel function In(x) 
of the first kind of order n ∈ IN is related to Jn(x) through In(x) = (−i)nJn(ix). Hence, 
applying this to (17), and using the fact that we will only be considering integral n, it is 
not difficult to construct the power series 

∞3 n+2kx
In(x) = 

2n+2kk!(n + k)! 
. (18) 

k=0 

√ 
Hence, applying (18), to In−1(2 νnς), the detection probability (15) becomes 8 ∞ ∞ √ 

e−nς n−1 −ν 3 ( νnς)n−1+2k 
ρn(ς, τ) = n−1 ν 2 e dν 

(nς) 2 τ k!(n − 1 + k)!
k=0 3 −nς 

∞ (nς)k 
8 ∞ −ννn−1+kdν.= e e (19)

k!(n − 1 + k)! τk=0 

It can be shown that 8 ∞ 8 ∞ 
e −ν νn−1+kdν = e −τ e −ν(ν + τ )n−1+kdν. (20) 

τ 0 

An application of a binomial expansion to (ν + τ)n−1+k, transforms (20) to 

8 ∞ n−31+k 
(ν + τ)n−1+k e −νdν =

(n − 1 + k)!τ j 
. (21) 

0 j=0 
j! 

Hence, applying (21) to (19), we arrive at the double series expansion 

∞ n−31+k 
ρn(ς, τ) = e 

−(τ+nς) 3 (nς)k τ j 
. (22)

k! 
j=0 

j! 
k=0 

The expansion (22) is not new to radar, but can be found in a number of references, such as 
[Shnidman 1989]. The following interpretation has not been identified previously. Define 

d
a pair of independent random variables (ℵ1(nς), ℵ2(τ)) = (Po(nς), Po(τ)). We observe 
that (22) can be written in the form 

∞ n−31+k3 −nς (nς)k −τ τ je e
ρn(ς, τ) = 

k! j! 
k=0 j=0 

∞3 
= IP[ℵ1(nς) = k]IP[ℵ2(τ) ≤ n − 1 + k] 

k=0 

= IP(ℵ2(τ) ≤ n − 1 + ℵ1(nς)). (23) 

6
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This result complements the corresponding result for n = 1 in [Weinberg and Kyprianou 
2005]. 

From a radar analysis point of view, (23) is an unexpected result. We can explain this 
result in a heuristic manner as follows. We can think of the random variable n−1+ℵ1(nς) 
as representing the signal to noise ratio. Similarly, ℵ2(τ) is a random variable representing 
the detection threshold. If we condition on the threshold variable, then (23) is counting 
the number of exceedences of a randomised threshold level. The larger the SNR ς, the 
more exceedences of the threshold, since ς is also the mean value of the associated Poisson 
distribution. Also, Poisson variables are models for “rare” events, and detections, in some 
circumstances such as low SNR, can be thought of as such. Hence the form of (23) is 
intuitive because it is counting the number of exceedences of a randomised threshold, 
using a model for rare events. 

We can also apply (23) to the generalised Marcum Q-Function. Note that, with reference 
to (16), (23) implies that X X ~ X ~~ 

β2 α2 
Qn(α, β) = IP ℵ2 ≤ n − 1 + ℵ1 . (24)

2 2 

Both (23) and (24) lead to very simple Monte Carlo estimators for these respective func
tions. 

7
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3 Stochastic Representation 

This Section is concerned with the derivation of a further stochastic representation of the 
detection probability (15). In order to derive this result, we require an expression for the 
distributional differences between independent Poisson random variables. Using Stein’s 
method, a new integral expression for this is obtained, and is applied to (23). 

3.1 Stein’s Method for Poisson Approximation 

Stein’s method [Barbour et. al. 1992, Chen 1975 and Stein 1972] is a general scheme that 
enables one to obtain estimates of the rate of convergence of probability distributions. 
[Weinberg 2005] contains a detailed description of the method, its history and application. 
Our application of it is to construct an expression measuring the distributional difference 
between two independent Poisson random variables. The application of such an expression 
is to the construction of further stochastic representations of (23). In this Subsection we 
present a concise outline of Stein’s method for Poisson approximation. The reader is 
advised to consult [Weinberg 2005] for a more comprehensive discussion. 

The key idea behind Stein’s method for Poisson approximation is to find a solution to the 
Stein equation 

λg(j + 1) − jg(j) = f(j) − Po(λ)f, (25) 

where f(j) = II[j∈A], λ > 0 and l 
1 if j ∈ A;

II[j∈A] = 0 otherwise. 

If (25) is well defined, then for a random variable W with support the nonnegative integers, 

IE[λg(W + 1) − Wg(W )] = IP(W ∈ A) − Po(λ){A}. (26) 

Hence, to measure how well the distribution of W is approximated by that of a Poisson 
random variable, we need to bound or estimate the left hand side of (26). 

The probabilistic approach to Stein’s method [Barbour et. al. 1992] relates (25) to the 
generator of an immigration-death process, with immigration rate λ, and unit per capita 
death rate [Ross 1983]. The generator of such a Markov process is 

Ah(j) = λ[h(j + 1) − h(j)] − j[h(j) − h(j − 1)]. (27) 

Here, we have written g(j + 1) = h(j + 1) − h(j). The probabilistic form of the Stein 
equation (25) is 

Ah(j) = f(j) − Po(λ)f, (28) 

and has solution 8 ∞ 
h(j) = − IE[f(Zj(t)) − Po(λ)f ]dt, (29) 

0 

8
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where Zj(t) is the immigration-death process, starting with j individuals [see Weinberg 
2005]. The idea, in this context, is to estimate the distributional differences in (28) by 
estimating the expectation of the generator (27), using properties of the function (29) and 
Markov process theory. 

In the next Subsection, we apply this to estimate the difference in distribution of two 
independent Poisson random variables. 

3.2 Differences of Poisson Distributions 

d d
We require an expression for the difference in distribution of W = Po(µ) and V = Po(λ). 
Hence, we simplify (26). Note that 

∞ −µ j3 jg(j)e µ
IE[Wg(W )] = 

j! 
j=0 

∞ −µ j−13 g(j)e µ
= µ 

(j − 1)!
j=1 

= µIE[g(W + 1)]. (30) 

Hence, applying (30) to (26), it follows that 

IE[λg(W + 1) − Wg(W )] = (λ − µ)IE[g(W + 1)]. (31) 

Consequently, we need to estimate the expectation IE[g(W + 1)]. It is useful to now use 
the probabilistic interpretation to Stein’s method, in order to simplify (31). Hence, by 
applying (29), and writing g(j + 1) = h(j + 1) − h(j), 8 ∞ 

g(j + 1) = − IE[f(Zj+1(t)) − f(Zj(t))]dt. (32) 
0 

As in [Barbour et. al. 1992 and Lindvall 1992], we couple the two processes in (32) as 
follows. The process Zj+1(t) evolves as Zj(t) with the addition of an extra individual, with 
independent Exponentially distributed lifetime. Hence Zj+1(t) = Zj(t)+II[ζ>t], where ζ is 
an independent Exponential random variable with mean 1. Then after t ≥ ζ, the processes 
couple together. It thus follows that 8 ∞ 

g(j + 1) = −IE II[ζ>t][f(Zj(t) + 1) − f(Zj(t))]dt 
0 8 ∞ 

= − e −tIE[f(Zj(t) + 1) − f(Zj(t))]dt. (33) 
0 

In view of (31) and (33), what we now require is the distribution of the immigration-death 
process Zj(t) when j is a Poisson random variable with mean µ. The following Lemma 
gives the required result: 

d d
Lemma 3.1 For the immigration-death process Zj(t), if W = Po(µ), then ZW (t) = 
Po(λ + (µ − λ)e−t). 

9
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Proof: 

Let PX(s) = IE[s
X ] be the probability generating function of the random variable X. It 

can be shown that if X = 
d 
Po(ν), then PX (s) = e−ν(1−s). Also, if Y = 

d 
Bin(n, p), then 

PY (s) = (1−p+ps)n . The immigration-death process Zj(t) can be decomposed into a sum 
of two independent random variables. Namely, it can be shown that Zj(t) = Xj(t)+Z0(t), 

where Xj(t) = 
d 
Bin(j, e−t) and Z0(t) = 

d 
Po(λ(1 − e−t)) [see Barbour et. al., 1992]. By 

using the independence of these two variables, and by conditioning on W , it follows that 

PZW (t) = IE[s ZW (t)] = IE[IE[s ZW (t)|W ]] 

= IE[IE[s XW (t)|W ]IE[s Z0(t)|W ]] 

= IE[PXW (t)(s)]PZ0(t)(s) 

= IE[(1 − e −t + e −t s)W ]e −λ(1−e−t)(1−s) 

−[λ+(µ−λ)e−t](1−s)= e ,


implying the desired result. 2


Since we are interested in cumulative distribution functions, we make the choice of A = 
{0, 1, . . . , k}, for some k ∈ IN. This is equivalent to the choice of f(j) = II[j ≤ k]. Let 
X(t) = ZW (t). Then it follows that 

8 ∞ 
IE[g(W + 1)] = − e −t[IP(X(t) + 1 ≤ k) − IP(X(t) ≤ k)]dt 

0 8 ∞ 
= e −tIP(X(t) = k)dt. (34) 

0 

Lemma 3.1 implies the point probabilities of X(t) are given by 

−t] [λ + (µ − λ)e−t]k IP(X(t) = k) = e[−λ+(µ−λ)e . (35)
k! 

Applying (35) to (34), and making the transformation ν = λ + (µ − λ)e−t, and without 
loss of generality, considering λ ≥ µ, we obtain 

1 
8 λ e−ννk 

IE[g(W + 1)] = dν. (36)
λ − µ µ k! 

An application of (36) to (31) results in 8 λ e−ννk 
Po(µ)f − Po(λ)f = dν. (37) 

µ k! 

10
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Hence (37) expresses the differences in Poisson cumulative probability distributions as an 
integral over their respective means, of a Poisson distribution function whose mean is the 
integration variable. The following subsection will apply (37) to construct an alternative 
expression for (23). 

d
Note that if we introduce a random variable Θ(µ, λ) = R(µ, λ), and an independent 

d
Poisson random variable ℵ(ν) = Po(ν), then it follows that (37) is equivalent to 

Po(µ)f − Po(λ)f = (λ − µ)IP[ℵ(Θ(λ, µ)) = k]. (38) 

The random variable ℵ(Θ(λ, µ)) in (38), a Poisson with a random mean, is called a mixed 
Poisson distribution. 

3.3 Stochastic Representation I 

We are now in a position to derive new expressions for the detection probability (23). 
d

It is necessary to introduce a number of random variables. Let ℵ1(nς) = Po(nς) and 
dℵ2(τ) = Po(τ) be the two independent Poisson random variables in the representation 

d d d
(23). Introduce random variables ℵ3(ς) = Po(ς), ℵ4(ν) = Po(ν) and Θ(τ, ς) = R(τ ∧ 
ς, τ ∨ ς). We assume that both ℵ1(nς) and ℵ3(ς) are independent, and when n = 1, it 
is assumed they are independent copies of each other [Lindvall 1992]. Additionally, it is 
assumed that ℵ1(nς), ℵ4(ν) and Θ(τ, ς) are pairwise independent. 

Then by conditioning on ℵ1(nς), 
ρn(ς, τ) = IP[ℵ2(τ) ≤ n − 1 + ℵ1(nς)] 

∞3 
= IP[ℵ1(nς) = k]IP[ℵ2(τ) ≤ n − 1 + k] 

k=0 Ww∞3 
= IP[ℵ1(nς) = k] IP[ℵ2(τ) ≤ n − 1 + k] − IP[ℵ3(ς) ≤ n − 1 + k] 

k=0 

∞3 
+ IP[ℵ1(nς) = k]IP[ℵ3(ς) ≤ n − 1 + k]. (39) 
k=0 

Since, by construction, ℵ1(nς) and ℵ3(ς) are independent and Poisson distributed, we have 
∞3 
IP[ℵ1(nς) = k]IP[ℵ3(ς) ≤ n − 1 + k] = IP[ℵ3(ς) ≤ n − 1 + ℵ1(nς)] 

k=0 

= ρn(ς, ς), (40) 

where we have utilised the Poisson expression (23) for the detection probability (15). Also, 
with an application of the Poisson difference equation (37), we have 

IP[ℵ2(τ) ≤ n − 1 + k] − IP[ℵ3(ς) ≤ n − 1 + k] 

11
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8 ς e−ννn−1+k 
= dν 

τ k! 8 ς 

= IP[ℵ4(ν) = n − 1 + k]dν. (41) 
τ 

Consequently, by applying (41) and using the fact that ℵ1(nς) and ℵ4(ν) are independent, 
∞ w W3 
IP[ℵ1(nς) = k] IP[ℵ2(τ) ≤ n − 1 + k] − IP[ℵ3(ς) ≤ n − 1 + k] 

k=0 8 ς 

= IP[ℵ4(ν) = n − 1 + ℵ1(nς)]dν. (42) 
τ 

Finally, combining (40) and (42), (39) becomes 8 ς 

ρn(ς, τ) = ρn(ς, ς) + IP[ℵ4(ν) = n − 1 + ℵ1(nς)]dν. (43) 
τ 

This gives a new expression for the detection probability (15). It shows that the latter is 
equal to the same detection probability, where the threshold is equal to the SNR, plus or 
minus a discrepancy factor that depends on the difference between τ and ς. 

It is interesting to note that the integrand in (43) is closely related to the detection 
probability ρn(ς, ν) = IP[ℵ4(ν) ≤ n − 1 + ℵ1(nς)]. In fact, it is obvious that IP[ℵ4(ν) = 
n − 1 + ℵ1(nς)] = ρn(ς, ν) − IP[ℵ4(ν) < n − 1 + ℵ1(nς)]. Hence, the integrand is a 
nonlinear function of ρn(ς, ν). This suggests that the represention (43) is a nonlinear 
integral equation of ρn(ς, ν), as a function of its second independent variable, namely ν. 

As pointed out in [Davis 1962 and Tricomi 1957], a function f(x), defined on a suitable 
domain, is the solution to a nonlinear Volterra integral equation if it satisfies 8 x 

f(x) = f(x0) + F [t, f(t)]dt, (44) 
x0 

where F is nonlinear. In the case of Volterra integral equations of the first and second 
kind, it is assumed that the function F is a product of the function f and a kernel K. We 
illustrate how (43) is of the form (44). 

Write the integrand in (43) as 

IP[ℵ4(ν) = n − 1 + ℵ1(nς)] = ρn(ς, ν)Kn(ς, ν), (45) 

where the kernel Kn(ς, ν) is 

IP[ℵ4(ν) = n − 1 + ℵ1(nς)]
Kn(ς, ν) = . (46)

IP[ℵ4(ν) ≤ n − 1 + ℵ1(nς)] 
Consider ς (and n) fixed, and choose f(x) = ρn(ς, x), F [x, f(x)] = −f(x)Kn(ς, x) and 
x0 = ς. Then (43) is exactly of the form (44), as a function of the threshold, namely 
x = τ . 

12
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It is worth noting that a function f satisfying the integral equation (44) can be esti
mated through a Picard iteration scheme [Giles 1987]. One considers the functional series 
{fm,m ∈ IN} with f0(x) = f(x0) and fm(x) defined recursively through 8 x 

fm(x) = f(x0) + F [t, fm−1(t)]dt. (47) 
x0 

There are existence and uniqueness theorems, which give conditions on F to guaran
tee a reasonable approximation is obtained [Giles 1987 and Tricomi 1957]. In principle, 
one could apply the scheme (47) to (43) to obtain estimates of the detection probability 
ρn(ς, τ). In addition, it may be possible to use properties of the solution to Volterra inte
gral equations to derive new bounds on the Marcum Q-function. The validity and merit 
of these approaches will be investigated in future research. 

Observe that, by taking partial derivatives, with respect to τ , it is not difficult to see that 

∂ 
ρn(ς, τ) = −IP[ℵ4(τ) = n − 1 + ℵ1(nς)], (48)

∂τ 

implying that ρn(ς, τ) is a decreasing function of the threshold τ , for fixed ς. Note that, 
in view of the preceding comments, the partial derivative (48) is a nonlinear function of 
ρn(ς, τ). 

It is still possible to write (43) in a more compact stochastic form. Using the definition of 
Θ(τ, ς), it is not difficult to see that 

ρn(ς, τ) = ρn(ς, ς) + (ς − τ) IP[ℵ4(Θ(τ, ς)) = n − 1 + ℵ1(nς)]. (49) 

Both (43) and (49) are new expressions for the detection probability (15), and both can be 
applied to the generalised Marcum Q-Function (13), by an application of (16), to derive 
analogous expressions. 

3.4 Stochastic Representation II 

It is possible to derive a representation analogous to (43), by instead conditioning on 
dℵ2(τ), instead of conditioning on ℵ1(nς). Introduce a random variable ℵ5(nτ) = Po(nτ), 

which we assume to be independent of ℵ2(τ). Throughout we use the same definitions of 
appropriate random variables, as defined in Subsection 3.3. Then, using a similar argument 
as in the derivation of (43), 

ρn(ς, τ) = IP[ℵ2(τ) ≤ n − 1 + ℵ1(nς)] 

∞3 
= IP[ℵ2(τ) = k] (IP[ℵ1(nς) ≥ k − n + 1] − IP[ℵ5(nτ) ≥ k − n + 1]) 

k=0 

∞3 
+ IP[ℵ2(τ) = k]IP[ℵ5(nτ) ≥ k − n + 1] 
k=0 

13
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∞3 
= IP[ℵ2(τ) = k] (IP[ℵ5(nτ) ≤ k − n] − IP[ℵ1(nς) ≤ k − n]) 

k=0 

+IP[ℵ2(τ) ≤ ℵ5(nτ) + n − 1] 
8 nς 

= ρn(τ, τ) + IP[ℵ4(ν) = ℵ2(τ) − n]dν 
nτ 8 ς 

≡ ρn(τ, τ) + nIP[ℵ4(nν) = ℵ2(τ) − n]dν. (50) 
τ 

Note that, analogously to (48), by taking partial derivatives of (50) with respect to ς, 

∂ 
ρn(ς, τ) = nIP[ℵ4(nς) = ℵ2(τ) − n]. (51)

∂ς 

Consequently, (51) shows that ρn(ς, τ) is an increasing function of the SNR parameter ς, 
for fixed τ . 

We can also construct an analogue of (49). Using the same definitions as in the latter 
expression, 

ρn(ς, τ) = ρn(τ, τ) + n(ς − τ)IP[ℵ4(nΘ(τ, ς)) = ℵ2(τ) − n]. (52) 

The representations (43) and (50) indicate that the detection probability (15), and also 
the Marcum Q-Function (13), may be estimated using properties of Volterra integral 
equations. This idea is partially explored in the next Section. 

14
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4 Bounds on the Pulse Detection Probability 

In this final Section we consider bounding the detection probability (15) in the simple case 
of n = 1. We will refer to this case as the pulse detection probability. Bounding this case, 
and equivalently, obtaining bounds on the standard Marcum Q-Function (11), has been 
the subject of much interest in recent years [Chiani 1999, Corazza and Ferrari 2002, Simon 
1998 and Simon and Alouini (2000 and 2003)]. We investigate whether bounds derived 
from the new stochastic representations (43) and (50) can improve known bounds on this 
pulse detection probability. 

It is important to note that a closed form result exists for the pulse detection probability, 
in the case where ς = τ . Specifically, it can be shown [Schwartz, Bennett and Stein 1966] 
that 

ρ(ς, ς) = 
1 � 
1 + e −2ςI0(2ς) 

= 
. (53)

2 

This result will be an integral component of the new bounds. A probabilistic proof of (53) 
can be found in Appendix A. Before deriving some new bounds based on (43) and (50), 
we examine some well-known bounds. 

4.1 Lower and Upper Bounds 

To begin, we examine known lower and upper bounds of the detection probability (15) in 
the case of n = 1. Such bounds have been examined for the Marcum Q-Function (13), 
for n = 1, in [Chiani 1999, Corazza and Ferrari 2002, Simon 1998 and Simon and Alouini 
(2000 and 2003)]. In the following we will express their bounds in terms of the single pulse 
probability of detection. Tight lower bounds give estimates of the least possible values of 
the detection probability, and thus have been used as a performance measure in [Chiani 
1999]. Upper bounds indicate the maximum possible detection probability, and are also 
of interest in performance analysis. Unless otherwise stated, it will be understood that all 
lower bounds are taken, in practice, as the maximum of the expressed bound and zero, in 
order to avoid meaningless lower bounds. Similarly, all upper bounds are the minimum of 
the expressed bound and unity. 

4.1.1 Case 1: ς > τ 

An upper bound on the pulse detection probability, or equivalently, the standard Marcum 
Q-function, for the case where ς > τ have only recently appeared in [Corazza and Ferrari 
2002]. These authors derive the upper bound 

√ F √ √ 
ρ(ς, τ) ≤ 1 − I0(2√ ςτ) e −ς − e − 1

2 
[ 2τ− 2ς]2 

2 ςτe k√ J √ √ √ o 
+ πς Erfc(− ς) − Erfc( τ − ς) , (54) 

15 
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where Erfc is the complementary error function 8 ∞2 −t2 Erfc(z) := √ e dt. (55)
π z 

As [Corazza and Ferrari 2002] emphasize, the upper bound (54) is the only known non
trivial upper bound on the pulse detection probability for the case under consideration. 

Lower bounds for ς > τ are more prevalent in the literature. A lower bound analogous to 
(54) is also introduced in [Corazza and Ferrari 2002], which is 

− 1 [2ς+η2] 
F 
− η2 − 1 [ 

√ 
2τ−η]2 ρ(ς, τ) ≥ 1 − e 2 e 2 − e 2 

5 ^ X√ ~�Mw W 
π η 2τ − η 

+ η Erfc −√ − Erfc √ , (56)
2 2 2 

√ 
where η = 

log(I√0(2 ςτ)) 
.


2τ


A Chernoff-like lower bound is derived in [Simon and Alouini 2000], given by 

1 
}
−[ √ τ−√ ς]2 −[ √ τ+ √ ς]2 

]
ρ(ς, τ) ≥ 1 − e − e . (57)

2


[Chiani 1999] also proposes a Chernoff-like lower bound, which is


√ 
ρ(ς, τ) ≥ e −[ς+τ ]I0(2 ςτ). (58) 

Finally, [Simon 1998] suggests the bound


1

ρ(ς, τ) ≥ 1 − √ √ e −[ς−τ ]

2 
. (59)

ς − τ 

We now include some comments on the performance and accuracy of these bounds. It is 
reported in [Corazza and Ferrari 2002] that the upper bound (54) performs well, when 
compared to the exact pulse detection probability, except as τ increases. [Chiani 1999] 
states that the lower bound (57) is very tight and better than (58). [Corazza and Ferrari 
2002] also report that their lower bound (56) is also very tight, and only matched by the 
bound (57). The bound (59) is reported to be quite unreliable by [Corazza and Ferrari 
2002]. 

4.1.2 Case 2: ς < τ 

In this case, there are many proposed upper and lower bounds in the literature. [Corazza 
and Ferrari 2002] derive the two sided bound 

√ 
I0(2 ςτ)√ √ √ 

√ πτErfc( τ − ς) ≤ ρ(ς, τ)
2 ςτe

I0(2 
√ 
ςτ) + √ √ √ � 

≤ √ e −[τ−ς]
2 
+ πςErfc( τ − ς) . (60)

2 ςτe

16
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[Simon and Alouini 2000] present the bound 

e −[τ+ς]
2 ≤ ρ(ς, τ) ≤ e −[τ−ς]2 . (61) 

[Chiani 1999] derives the two sided bound 

√ 
e −[ς+τ ]I0(2 

√ 
ςτ) ≤ ρ(ς, τ) ≤ e −[ς+τ ]I0(2 √ ςτ) + ςπ 

Erfc( 
√ 
τ −√ ς). (62)

2 

The final bound we consider is that due to [Simon 1998], which is 

√ √ 
√ τ √ e −[τ+ς]

2 ≤ ρ(ς, τ) ≤ √ τ √ e −[τ−ς]
2 
. (63)

τ + ς τ − ς 

Again, we provide some comments on the accuracy and performance of these bounds. 
[Corazza and Ferrari 2002] compare their upper bound with the three others introduced 
here, and found that their upper bound in (60) has the best performance. Their lower 
bound in (60) also performs well, and is only matched by that in (62). [Chiani 1999] 
reports that the bounds in (62) are tighter than those in (61). 

4.2 Some New Lower and Upper Bounds 

In this section we derive some new upper and lower bounds on the detection probability 
(15) in the case where n = 1. These bounds are derived using the representations (43) 
and (50). We consider the two cases ς > τ and ς < τ separately. Observe that in view of 
(43) and (50), we have 8 ς 

ρ(ς, τ) = ρ(ς, ς) + IP[ℵ1(ν) = ℵ2(ς)]dν, (64) 
τ 

and 8 ς 

ρ(ς, τ) = ρ(τ, τ) + IP[ℵ1(ν) = ℵ2(τ) − 1]dν, (65) 
τ 

where ℵ1(·) and ℵ2(·) are independent Poisson random variables, with appropriate means. 
Throughout we will utilise the notation that a ∨ b is the maximum of a and b, while a ∧ b 
is the minimum of a and b. 

4.2.1 Case 1: ς > τ 

Note that in this case both integrals in (64) and (65) are nonnegative, and so an appropriate 
lower bound is given by 

ρ(ς, τ) ≥ ρ(ς, ς) ∨ ρ(τ, τ), (66) 

where we can apply (53) to evaluate this exactly. 

17 
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In order to derive an upper bound, recall that (51) implies ρ(ς, τ) is an increasing function 
in ς. Hence, 8 ς 

ρ(ς, τ) ≤ ρ(ς, ς) + IP[ℵ2(ς) ≤ ℵ1(ν)]dν 
τ 8 ς 

= ρ(ς, ς) + ρ(ν, ς)dν 
τ 

≤ [1 + ς − τ ]ρ(ς, ς). (67) 

By applying a similar argument to (65), and using the fact that in view of (48), ρ(ς, τ ) is 
a decreasing function of τ , it can be shown that 

ρ(ς, τ ) ≤ [1 + ς − τ ]ρ(τ, τ). (68) 

Hence, by combining (67) and (68), we arrive at the bound 

ρ(ς, τ) ≤ [1 + ς − τ ] (ρ(ς, ς) ∧ ρ(τ, τ)) . (69) 

Finally, by combining the bounds (66) and (69), we arrive at the two sided bound 

(ρ(ς, ς) ∨ ρ(τ, τ)) ≤ ρ(ς, τ) ≤ [1 + ς − τ ] (ρ(ς, ς) ∧ ρ(τ, τ)) . (70) 

On inspection of the upper bound (69) it is clear that if the difference ς − τ is much larger 
than minimum of the two probabilities, then the bound will be likely to exceed unity. 

4.2.2 Case 2: ς < τ 

In this case, we note that the integrals in (64) and (65) are nonpositive, and so it follows 
that we have the upper bound 

ρ(ς, τ ) ≤ ρ(ς, ς) ∧ ρ(τ, τ ). (71) 

To derive a lower bound, note that 

IP[ℵ1(ν) = ℵ2(ς)] ≤ ρ(ν, ς) ≤ ρ(ς, ς), (72) 

and so applying (72) to (64), we arrive at 

ρ(ς, τ ) ≥ [1 + ς − τ ]ρ(ς, ς). (73) 

Using a similar argument applied to (65), it can be shown that 

ρ(ς, τ ) ≥ [1 + ς − τ ]ρ(τ, τ). (74) 

Hence, by combining (73) and (74), we arrive at 

ρ(ς, τ) ≥ (1 + ς − τ)(ρ(ς, ς) ∨ ρ(τ, τ)). (75) 

Thus, by combining (71) and (75), we arrive at the two sided bound 

(1 + ς − τ)(ρ(ς, ς) ∨ ρ(τ, τ)) ≤ ρ(ς, τ) ≤ (ρ(ς, ς) ∧ ρ(τ, τ)) (76) 

Note that the lower bound (75) may also experience the same problems as the upper bound 
(69), resulting in a trivial lower bound in (76). 
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4.2.3 Some Comments on the Representation in Equation (64) 

Consider again the representation of (64), which we write in the form 8 ς 

ρ(ς, τ) = ρ(ς, ς) + IP[ℵ1(ν) − ℵ2(ς) = 0]dν, (77) 
τ 

where ℵ1(·) and ℵ2(·) are independent Poisson random variables. Define the random 
variable 

Z(ν, ς) = ℵ1(ν) − ℵ2(ς). (78) 

The difference of independent Poisson random variables has been studied extensively in 
the literature [Irwin 1937, Karlis and Ntzoufras 2003 and Skellam 1946], and is known as a 
Skellam distribution. This distribution has found application in the analysis of sports data 
[see Karlis and Ntzoufras 2003 and references contained therein]. Thus, the probability 
in the integral component of (77) is the probability that a Skellam distribution takes the 
value zero. Hence it may be possible to find some good approximations, and bounds, for 
IP[Z(ν, ς) = 0] in the literature. A preliminary review has found Gaussian approximations 
for this, but they were considered not to be useful for the applications considered in this 
report. Part of the problem is that the random variable Z(ν, ς) in (78) has mean ν − ς and 
variance ν +ς, so that a Gaussian approximation applied to IP[−1 < Z(ν, ς) < 1] will result 
in intractible integrals in (77). What is needed is an easily integrated approximation. 

In further research in this area, the author plans to examine the literature more extensively, 
for work on the Skellam distribution, in order to improve the bounds of Subsection 4.2. 

In the next Section we perform some numerical comparisons to investigate whether the 
new bounds (70) and (76) provide any improvement on the bounds in Subsection 4.1. 

4.3 Numerical Comparison of Bounds 

We are now in a position to compare the bounds of Subsection 4.2 to those in Subsection 
4.1. Extensive numerical experiments showed that the new bounds of Subsection 4.2 can 
provide some improvements on the corresponding bounds in Subsection 4.1, but are not 
globally better. We consider a selection of cases to show the strengths and weaknesses of 
these new bounds. 

Each figure includes a comparison of the bounds to an almost exact result. The latter has 
been obtained via recursive adaptive Simpson quadrature, with a tolerance of 10−6 . 

Figures 1 and 2 are plots of upper bounds for the case where ς > τ . In this case, we 
compare the upper bound (54), due to [Corazza and Ferrari 2002] to the new upper bound 
in (70). Note that the vertical scale is in natural logarithms. Each Figure contains two 
subplots. The first subplot shows the bounds as a function of τ , for a fixed ς, while the 
second subplot shows it as a function of ς, for a fixed τ . The legend used in the Figure 
refers to the bound of [Corazza and Ferrari 2002] as ‘C-F’, while ‘Wei’ refers to the bound 
in (70). The probability estimated from adaptive Simpson quadrature is referred to as 
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‘Exact’. As can be observed, the new upper bound provides no improvement on that due 
to [Corazza and Ferrari 2002]. Other numerical experiments provided no improvement on 
this result. This is most likely due to the fact that more work needs to be done to obtain 
a satisfactory estimate of the integral component of (77). 

Comparison of Upper Bounds for ς > τ, for fixed ς 
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Figure 1: Comparison of upper bounds for the case where ς > τ , showing the bounds (54) 
and (70) as functions of τ and ς. ‘C-F’ refers to the upper bound due to Corazza and 
Ferrari, namely (54), while ‘Wei’ is the upper bound in (70). The vertical scale is in 
logarithms. 

We now consider upper bounds for the case where ς < τ . In this situation, we have four 
upper bounds to compare to the new upper bound in (76). Specifically, we are interested 
in how the upper bounds in (60)-(63) compare to (76). Two sets of (ς, τ) parameters are 
considered. Figures 3 and 4 are for one case, while Figures 5 and 6 are a different case. 
Bounds in the Figures are abbreviated as ‘C-F’, for that due to [Corazza and Ferrari 2002], 
‘S-A’, for [Simon and Alouini 2000], ‘Sim’ for [Simon 1998], ‘Chi’ for [Chiani 1999] and 
‘Wei’ for that in (76). As before, the vertical scale is in logarithms. The first subplot of 
Figure 3 shows that the new bound (76) performs better than all others, with the exception 
of the upper bound (62), due to [Chiani 1999]. The second subplot shows a case where 
the new bound has superior performance. Figure 4 is the same as Figure 3, except the 
two worst performing bounds have been removed. 

Figures 5 and 6 show the upper bounds (60)-(63) compared to (76), in a slightly different 
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x 10
−4 Comparison of Upper Bounds for ς > τ, for fixed ς 
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−4 Comparison of Upper Bounds for ς > τ, for fixed τ
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Figure 2: Similar plot to that of Figure 1, except on a different range of ς and τ values. 

scenario. In this example, the upper bound due to [Chiani 1999] has the best performance, 
while the upper bound in (76) tends to be very inaccurate. Figure 6 is the same as Figure 
5, with the removal of the two worst performing bounds. 

We now investigate lower bounds, beginning with the case where ς > τ . Figures 7 and 
8 are for one particular selection of (ς, τ) parameters. The lower bounds investigated are 
those in (56)-(59), and the new lower bound in (70). The bounds are described in the 
legend using the same abbreviations as before. Although difficult to see, the exact values 
lie almost on the horizontal axis. Figures 7 and 8 shows that the new bound (70) performs 
well, and is only outperformed by the lower bound (56) due to [Corazza and Ferrari 2002]. 

The final scenario we consider is lower bounds in the case where ς < τ . Figure 9 shows a 
plot of the lower bound components of (60)-(63), as well as the new lower bound in (76). 
The same naming conventions are employed in the legend, and the vertical scale is also in 
logarithms. The first subplot of Figure 9 is an example where the new lower bound in (76) 
has superior performance. The second subplot in Figure 9 shows the same effect, except 
the lower bound in (62) is slightly better for small values of τ . Figure 10 is the same as 
Figure 9, except the two best performing bounds are compared. 
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Comparison of Upper Bounds for ς < τ, for fixed ς 

0.2 0.22 

Comparis

0.24 

on of Upper
τ 

Boun

0.26 

ds for ς < τ, 

0.28 

for fixed τ 

0.3 

0 0.02 0.04 
ς 

0.06 0.08 0.1 

Figure 3: A comparison of upper bounds in the case where ς < τ . The new upper bound 
in (76), labelled ‘Wei’, is outperformed by the bound (62) due to Chiani, labelled as ‘Chi’. 
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Comparison of Upper Bounds for ς < τ, for fixed ς 
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Figure 4: The same plot as for Figure 3, with the removal of the two worst performing 
bounds. 
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Comparison of Upper Bounds for ς < τ, for fixed ς 
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Figure 5: Comparison of upper bounds in the case where ς < τ , but over a different range 
of ς and τ parameters. In both subplots, it is clear that the bounds ‘Sim’, due to Simon 
(63) and ‘S-A’, due to Simon and Alouini (61) are unsatisfactory. Figure 6 shows the 
same plot with these two upper bounds removed. 
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Comparison of Upper Bounds for ς < τ, for fixed ς 
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Figure 6: This is the same as Figure 5, except the two worst performing bounds have been 
removed. It is now clear that the bound labelled ‘C-F’, due to Corazza and Ferrari (60) is 
also unsatisfactory. The bound due to Chiani (62) performs the best, while the new upper 
bound in (76), labelled as ‘Wei’, is the second best. 
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Comparison of Lower Bounds for ς > τ, for fixed ς 
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Figure 7: Plots of lower bounds in the case where ς > τ . The same labelling convention 
has been employed as in previous figures. The exact value, labelled as ‘Exact’, is almost 
on the horizontal axis in each subplot. It is clear that the new bound (70) is performing 
very well. See Figure 8 for clarification of this. 
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Comparison of Lower Bounds for ς > τ, for fixed ς 
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Figure 8: The same plot as for Figure 7, except with the removal of the bound (59) due to 
Simon. As for Figure 7, the exact value is almost on the horizontal axis. The best bound 
is that due to Corazza and Ferrari (56), while the new lower bound in (70), namely ‘Wei’, 
is second best. 
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Comparison of Lower Bounds for ς < τ, for fixed ς 
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Figure 9: Lower bounds for the case where ς < τ . This is an example where the new lower 
bound in (76) has very good performance. The only bound that is comparable to the new 
lower bound is that due to Chiani (62). The latter is better in the second subplot when ς 
is very small. 
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Comparison of Lower Bounds for ς < τ, for fixed ς 
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Figure 10: The same plot as in Figure 9, with the inclusion of the Chiani lower bound in 
(62), and the new lower bound in (76), and the exclusion of the other lower bounds. The 
first subplot shows the improvement more clearly, while the second subplot shows there is 
a point where the better bound switches from the Chiani one to the new lower bound. 
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5 Conclusions and Future Directions 

This report introduced a number of new results. A Poisson association with the Mar-
cum Q-Function, and associated detection probabilities, was derived, extending the case 
considered in [Weinberg and Kyprianou 2005]. Stein’s method was used to produce a 
new expression for the distributional differences of a pair of Poisson random variables. 
This permitted the construction of two Volterra integral equations, whose solution was 
the detection probability under consideration. These new representations were used to 
construct lower and upper bounds on the single pulse probability of detection. Numerical 
comparisons to other bounds in the literature showed there are cases where these new 
bounds provided improvements. 

It is believed that better global lower and upper bounds could be achieved through further 
analysis of these Volterra integral equations. Specifically, there may be properties known 
about such equations that will lead to new ways of estimating the Marcum Q-Function, 
and associated detection probabilities. As pointed out in the report, it may be possible 
to estimate the detection probability (15) using a Picard iteration scheme applied to (43). 
Also, using estimates of the Skellam distribution’s zero probability, applied to (77), may 
also produce improved bounds. This will be the focus of subsequent research in this area. 
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Appendix A: Proof of Equation (53) 

Suppose X and Y are independent and identically distributed Poisson random variables 
with mean λ. Then, with reference to the expansion (18), X ~ 2∞ ∞

IP(X = Y ) = 
3 e−

k

λ

! 

λk 
= e −2λ 

3 
(

λ

k

2

!)

k 

2 
= e −2λI0(2λ). (A.1) 

k=0 k=0 

Since X and Y are statistically identical, it follows that 

IP(X < Y ) ≡ IP(X > Y ). (A.2) 

Thus, (A.2) implies that 
IP(X W (A.3)= Y ) = 2IP(X < Y ). 

Hence, with an application of (A.1) and (A.3), it follows that 

IP(X ≤ Y ) = IP(X = Y ) + IP(X < Y ) 

= e −2λI0(2λ) + 
1 � 
1 − e −2λI0(2λ) 

= 
2 

=
1 � 
1 + e −2λI0(2λ) 

= 
. (A.4)

2 

The desired result now follows by an application of (A.4) to (23) in the case where n = 1. 
2 
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derived using these representations, and the bounds are compared with known results. As a by-product 
of this work a new useful expression for the differences in distributions of independent Poissons random 
variables is obtained. 
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